Radiation of Angular Momentum by Neutrinos from Merged Binary Neutron Stars

نویسندگان

  • Thomas W. Baumgarte
  • Stuart L. Shapiro
چکیده

We study neutrino emission from the remnant of an inspiraling binary neutron star following coalescence. The mass of the merged remnant is likely to exceed the stability limit of a cold, rotating neutron star. However, the angular momentum of the remnant may also approach or even exceed the Kerr limit, J/M = 1, so that total collapse may not be possible unless some angular momentum is dissipated. We find that neutrino emission is very inefficient in decreasing the angular momentum of these merged objects and may even lead to a small increase in J/M. We illustrate these findings with a postNewtonian, ellipsoidal model calculation. Simple arguments suggest that the remnant may form a bar mode instability on a timescale similar to or shorter than the neutrino emission timescale, in which case the evolution of the remnant will be dominated by the emission of gravitational waves. Department of Astronomy and National Center for Supercomputing Applications, University of Illinois at Urbana-Champaign, Urbana, Il 61801

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Model for Short Gamma-Ray Bursts: Heated Neutron Stars in Close Binary Systems

In this paper we present a model for the short (< second) population of gamma-ray bursts (GRBs). In this model heated neutron stars in a close binary system near their last stable orbit emit neutrinos at large luminosities (∼ 1053 ergs/sec). A fraction of these neutrinos will annihilate to form an ee pair plasma wind which will, in turn, expand and recombine to photons which make the gamma-ray ...

متن کامل

Quasi-normal modes of rotating relativistic stars - neutral modes for realistic equations of state

We compute zero-frequency (neutral) quasi-normal f -modes of fully relativistic and rapidly rotating neutron stars, using several realistic equations of state (EOSs) for neutron star matter. The zero-frequency modes signal the onset of the gravitational radiation-driven instability. We find that the l = m = 2 (bar) f -mode is unstable for stars with gravitational mass as low as 1.0 − 1.2M⊙, dep...

متن کامل

Supranova Events from Spun-up Neutron Stars: An Explosion in Search of an Observation.

We consider a formation scenario for supramassive neutron stars (SMNSs) that takes place through mass and angular momentum transfer from a close companion during a low-mass X-ray binary phase, with the ensuing suppression of the magnetic field. After the end of the mass transfer phase, SMNSs will lose, through magnetic dipole radiation, most of their angular momentum, triggering the star's coll...

متن کامل

Binary Black Holes in Stationary Orbits

We show that under certain astrophysical conditions a binary system consisting of two compact objects can be stabilized against indefinite shrinking of orbits due to the emission of gravitational radiation. In this case, the lighter binary companion settles down to a stable orbit when the loss of the angular momentum due to gravitational radiation becomes equal to its gain from the accreting ma...

متن کامل

The Proto-neutron Star Phase of the Collapsar Model and the Route to Long-soft Gamma-ray Bursts and Hypernovae

Recent stellar evolutionary calculations of low-metallicity massive fast-rotating main-sequence stars yield iron cores at collapse endowed with high angular momentum. It is thought that high angular momentum and black hole formation are critical ingredients of the collapsar model of long-soft γ-ray bursts (GRBs). Here, we present 2D multi-group, flux-limited-diffusion MHD simulations of the col...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1998